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A domain decomposition method (DDM) is presented for the solution of the time-
harmonic electromagnetic scattering problem by inhomogeneous 3-D objects. The
computational domain is partitioned into concentric subdomains on the interfaces
of which Robin-type transmission conditions are prescribed. On the outer boundary
terminating the computational domain, the radiation condition is accounted for by
employing an integral equation (IE) formulation. The DDM decouples the interior
problems, that correspond to the solution of Maxwell’s equations inside each subdo-
main and are formulated by using a finite element method, from the exterior problem
solved by employing the IE. It has been shown that the solutions of this DDM algo-
rithm converge to those of the original problem. A particular IE is used that allows
the implementation of a very simple and fully iterative solver. The main advantage
offered by this technique is a reduction in memory requirements. Various numerical
examples are presented that illustrate its potential.2001 Academic Press

Key Words:electromagnetism; Maxwell; absorbing boundary conditions; domain
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I. INTRODUCTION

The scattering problem of a time-harmonic electromagnetic wave from penetrable c
plex 3-D objects can be accurately solved by employing a hybrid finite element (FE) &
integral equation (IE) method [1-5]. A surfa&encloses the inhomogeneous, possibly
anisotropic, medium constituting the obje8tis the outer boundary of the computational
domaininside which the fields are formulated using the finite element method. Prescribe
S, the IE constitutes an exact radiation condition that accounts for the propagation in the
bounded and homogeneous surrounding space. Both IE and FE formulations are coupl
enforcing the continuity of the tangential components of the fieldS.drhe discretization
process leads to a linear system constituted, essentially, by a sparse FE matrix and a ¢
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IE matrix. However, the solution of this system becomes computationally intensive a
requires large computer resources when the size of the object is electrically large.

A domain decomposition method (DDM) allows the decomposition of a large prol
lem into several coupled subproblems that can be solved independently, thus reducing
memory storage requirements. It has drawn the attention of a number of researchers i
electromagnetic community, who have devised several methods to deal with the scatte
problem. In particular, two classes of methodologies may be identified. In the first one [6-
no iterations are required but the solutions may not be unique on account of the fact
some subproblems may involve Dirichlet or Neumann boundary conditions. Methodo
gies of the second class [10-14] are based on an iterative DDM originally proposed in |
11]: The fields in two adjacent subdomains are connected by a mixed boundary condit
termed transmission condition (TC), that ensures the uniqueness of the solutions and
convergence to those of the original problem. To improve the efficiency of the TC ar
consequently, to reduce the number of iterations, this method has been later adaptec
particular, “onion-like,” partition of the computational domain into concentric subdomair
circumscribing the object[13, 14], and the convergence of the corresponding modified al
rithm has been established in [15]. On account of its local character, an absorbing boun
condition (ABC) that approximates the exact radiation condition has been us8dmn
further reduce the computing time and memory storage. However, scattering by a ste
object, the bistatic radar cross section (RCS) of which exhibits a large angular dyna
range, can be accurately calculated in the high frequency domain only if the bousidar
is placed sufficiently far away from the object, requiring for that reason a large number
subdomains [14, 16]. Hence, it turns out to be necessary to have at one’s disposal an “e»
method where the IE is substituted to the ABC.

In this paper, we investigate the numerical capabilities of the hybrid FE-IE DDM pr
posed in [15]: The unbounded surrounding space in the region exter®istoonsidered
as an additional subdomain connected to the interior FE region by a TC, while keeping
the latter the subdomains’ partition. It offers, a priori, the following advantages:

—The solutions of the FE and IE systems are performed separately: it only remain:
choose an |E that can be solved iteratively in an efficient manner.

—The FE system is solved by using the DDM as in [14]. Each partial FE system cori
sponding to one subdomain is solved with a standard conjuguate gradient (CG).

The organization of this paper is as follows. In Section |l we outline the 3-D electroma
netic scattering problemto be solved and the DDM algorithm employed. The IE formulatic
originally proposed by Desps[17] and later improved [18], is presented in Section Il1. Its
main advantage resides in the fact that only Hermitian positive definite matrices need tc
inverted. A few numerical results display its efficiency for the particular case of scatteri
by a nonpenetrable object. Section IV outlines the implementation of the FE—-IE DD
algorithm. The numerical results obtained for the scattering from various inhomogene
objects are presented in Section V that illustrate the potential of this technique, whose n
advantages and drawbacks are summarized in Section VI.

II. STATEMENT OF THE PROBLEM AND DDM ALGORITHM

A monochromatic incident plane wave'®, H) illuminates the inhomogeneous body
immersed in free-spac& andH designate the electric and magnetic fields, respectivel
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Here, and in the followingH stands forno H, wherenq is the free-space impedance.
The assumed (and suppressed) time dependence(isvexpandk = 27 /1 = w/c is the
wave number of the incident fielc (s the light velocity). Without loss of generality,
the Leontovich impedance boundary condition (LIBC) is prescribed upon the sigface
of the scatterer which may be coated by inhomogeneous materials of relative dielec
permittivity e and magnetic permeability that are position dependent33 tensors. To
alleviate the notations, the dependence of all quantities on the coordinates is generally
pressed. We consider the solution of the following exact scattering problemERIndH
that satisfy, in the unbounded domain exterioGtpthe following set of equations:

VY x[e 'Y xH -k’uH=0, ¥-(uH)=0 E= —'Ee—lz xH (2.1a)

nxe 'V xH=-ikZHy; onS (2.1b)
H=H"+HS, E=E"+ES (2.1c)
—ikr
r— 00 H(r, 60, ¢) ~ ———u, x [u, x H®, ¢)]
r (2.1d)
e—lkr
ES(r.6.¢) ~ ———Uu, x H°(6. ¢).

r

ndesignates the outward normal3gas well as to all the surfaces that are considered in th
following; (2.1b) is the LIBC, wheré is the normalized impedance prescribed3rand
Hig = —0x (ax H) - (r, 6, ¢) are the usual spherical coordinates apéuhe unit radial
vector in this coordinate system.

Now, we recall the DDM algorithm as formulated in [14, 18).is the computational
domain Q2 = S U ) that includes all the inhomogeneous materials and is partitione
into N concentric subdomair®;, 1 <i < N. §_; andS denote, respectively, the inner
and outer boundaries 6f;, andS = Sy (see Fig. 1). LeE!, H' be the values of the fields

FIG. 1. “Onion-like” partitioning of the computational domai®.
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in Q; at iteration¢. They satify Maxwell’'s equations if2;

¥ x [e Y x H] —KuH =0, V- (uH) =0, E = —'Eeflv xH  (2.2)
and the following zeroth order TCs @2 = S_1U §

TH =TH , TConS, (2.3a)
THH = T [aH ™" + (1 - a)H 1] TC on§ (2.3b)

witha; =0,0< a, < 1/2for¢ > 2, and
T*H = +iknx E—ikHyg = 0 x [e ¥ x H] — ikH,q (2.4)

€ andu may be discontinuous on the interfaces. Fer 1, the LIBC (2.1b) is substituted
to the TC onS:

nx e 'V x Hj = —ikZHj,, LIBC on$,. (2.5)

The infinite free-space domaR®\ 2 is considered as an additional subdom@ig, 1, and
(ENs1 HY 1) denote the fields i®@2y1. If

E?\f-&-l = Ef\l+l —E™ (2.6)
H?\f-&-l = Hf\l+1 —H"™
then €}, HY,,) satisfy Egs. (2.1a), (2.1d) for all with e = o = 1. (B, HY,,) are
connected to the fields 2y by (2.3b), wheré = N, and (2.3a), where= N + 1 which
reads

T H{,, =T H. (2.7)
In fact, (2.7) is an inhomogeneous LIBC &with Z =1
—nx Y,y — H 1 = 0 = 0x E™ 4+ HI® —nx Y — Hy, (2.8)

and constitutes the boundary condition®at iteration¢ for the IE, defined in Section lll,
that relates the values 0B of n.x EY[,, to those ofn x HY[ ;. If the solutions of this
IE are unique andme <0, Imu < 0 in , then lim_ ., (E", HY) = (Eqy, Hey) in i,
1<i < N+1, where(Eg,, Hg,) denote the solutions of the original problem (2.1a—d)
[15]. The initial values are chosen to be

HO =H™ 1<i<N (2.9)

and we emphasize that the uniqueness and convergence of the DDM algorithm do
depend on this particular choice. For each valué, ¢he problemsP?, that correspond to
Egs. (2.2)—(2.8) and to the |IE for= N + 1, are solved successively for increasing value:
of i.
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[ll. INTEGRAL EQUATION FORMULATION

In view of the boundary condition (2.8) satisfied by the IE®rwe have implemented
the IE formulation corresponding to the penalized system (withBtharameter) proposed
in [18], and outlined in Section I11.1 for the DDM. Since this formulation is new and ha
never been tested for 3-D problems, we investigate in Section 111.2 its numerical efficier
for the particular case of scattering from a nonpenetrable object of siBfasevhich the
LIBC (2.1b) is prescribed witlz = 1.

[ll.1. 1E Formulation for the DDM
The IE is constituted by the two following, uncoupled and— systems:

g kKexiph) (XL) (gl )
—k(KH FiBl) 26281 + Ds ) \ X 0/’ '
| is the identity operatol " designates the adjoint operatorkofand
X = (B £iHY,,) xn 32)
gi = (@ Fig' x /2.

Let @, ® be tangential vectors t8 and(x, y), (X, y)« designate the following Hermitian
inner products

T 2
(&y)=/szd‘(n-x(mdL (x. y>oo=/O sinede/o X*(6, 9)Y(. ) do.

wherex* designates the complex conjuguatexoT he matrix elements of the operatdts
andD., defined in Appendix A, are given by

- g 1 [ .
(@, KL®) = —/S SCD(L) (o) x Vg (r, )] drdr — > /SQ(L) [0 x O] dr

Fk / (1) - ()G (L, ) drdr
Sx S

1 ~ -
£ /S (% B0V 00 1. 1) drlr (3.32)
(@, Di®) = (2", 86: D)o
2
0:0)0.9) = = | @0 ([ +iu,)0w] x noje  de (3.30)

Uy = (COSA Cosp, CosH sing, —sind)', u, = (—sing, cosp, 0t
(u* designates the transposewfwith

)= cogk|L—r|) () =
Or (L, _747T|L—L/| , GLL) =

sin(k|r.— r’])
drlr—r/|
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The solutionsX4, Xf of systems (3.1) are unique if8 8 < 1. Besides, we have
i
T2k
Itis important to note that (3.4) holds for the exact, nondiscretized, system (3.1) only. In t
case, the equations corresponding to the second line of (3.1) are equivalent to the EFIE

MFIE obtained orSwhen taking the limit from the interior d, while those corresponding
to the first line of (3.1) result from the incorporation of these IE in the LIBC (2.8).

X = X5, (3.4)

[ll.2. Scattering from S with the LIB@.1b)and Z=1

In this section, we solve

1_Tﬁ|+% k(Ky £iBl) (Xi>:(gi) (3.5)
—k(KH Figl) 2k281 + D ) \ Xk 0 '
with
X =(E+iH% xn (3.6a)
0. = (@Figxn/2, g=nx (E"—nx H"). (3.6b)

The numerical implementation is as follow8is meshed with triangles ard,., X, are
represented by the standard H(div) edge basis functions [19]. In (3.3a, b), test and b
functions are identical® = ®. The matrix elements oK. are evaluated using a stan-
dard quadrature rule for nonadjacent triangles, and special care is taken for the integre
of the singularity ing; (t, /) [20]. RegardingD.., the integration on the unit sphere in
(@, sH8. @) (see (3.3b)) is carried out by a Gauss—Legendre quadrature rule. Followi
[17], (3.5) is solved by first computing/,, which yields

R(KE Fip)A ™Ky 1) + 2k281 + D)X, = k(KH Figl)A g,

Xe = Ags — k(Ks £ip1)X,] 3.7
_1-B, D:
A==+

The main advantage of this formulation resides in the fact that all the matrices that nee
be inverted, namelykf(KH Fipl)A-1(Ky £i81) + 2k?81 + D] and A, are Hermitian
positive definite (if O0< 8 <1). As a consequence, (3.7) can be solved by using a vel
simple double CG: A first one (CG1) to inveft—in fact Ax = b is solved, withA pre-
conditioned by the diagonal—and a second one (CG2) for the solution of (3.7) with
preconditioning. Note thaAx = b must be solved twice for each iteration of the CG2.
Besides, since systems and — are uncoupled, they can be solved successively. Firs
matricesD. and K ,—obtained fromK . by omitting the single integral term in (3.3a)
which is recalculated at each iteration—are real symmetric and computed and storec
out-of-core binary files. Ther . andD.. are read on these files, systenis solved, and
the procedure is repeated for systemAs a result, the memory required for the solution
of (3.5) corresponds to the storagef. and D, (or K_ and D_), i.e., to the storage
of Ns(Ns + 1) real numbersNs being the number of edges @& The CG1 is stopped at
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iterationn satisfying
CG1 :||[(AX" —b)/b|| <1 (3.8)

(Il - Il is the L? norm). For the exact solutions of system (3.5), we have the equivalent
(3.4), namely,

, i
X = F g Xe. (3.9)

Let us define the discrepancy, due to discretization, between the L.h.s. and r.h.s. in (3.
iterationn of the CG2 by

AT = | X0 F 2ik X (3.10)

For reasons that will be explained in the following, the CG2 is stopped when

An
CG2: ‘1 - =
AL

<1, (3.11)

1

We have verified, through various numerical experiments, that the vaiui@of 8 < 1)
has little incidence on the results, and all the calculations presented in this paper have |
carried outwith3 = 0.25. The first numerical experiments have been performed at 300 Mt
on a sphere of radius 30 cm.4fis directed along an axis of the sphere, the incident fiel
is given by

EM(x,y,2) =\, expix(X,y,2), H"(X,vy,2) =\,expixX,Y,2)

x (X, Y, 2) = k(xsin6™ cosp™ + y sing™ sing™ + zcosh™™)
_ _ _ . . (3.12a)
V, = (cos9™™ cosp™, coss sing, — sing™™)"

\V, = (sing™, — cosy™, 0)!

for TM polarization and, for TE polarization,
E™(X,y,2) = \Lexpix(x,y,2, H™(X,y,2) = -V expix(x,y,2).  (3.12b)
OnFig. 2is plotted the bistatic RCS vs the angle of observatigith ¢ = 0 (9™ = ¢'"® = 0)

RCS) = 10|og[r|im 4r2|ES(r, 0, ¢ = 0)|2
—00

computed from the Mie series (exact RCS), the valuex obn S (RCS) and those o/,
(RCS) for two values ofry, rp. Notice that RCS and RC&re polarization independent
since system (3.5) is invariant under the transforma®én(E3, H%) — (—HS, E5). The
RCSs computed from (3.5) are in excellent agreement with the exachNgne:1638, and

the average length of the edge&'®® is 1/20. Also, Fig. 2 plots g,

recz = ICx" — b,

whereC andb represent, respectively, the matrix and the r.h.s. of the first equation
(3.7), andA" vs the numben of CG2 iterations (botht and — systems behave very

similarly). We observe that\" reaches a plateau that corresponds to the discretizati
error (see Appendix A). Decreasingandr, does not change the value &f : this is the
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FIG. 2. Sphere withZ = 1. IE formulation withé™™ = 0. Left: RCS vs the angle of observatiénRight:
recgz@ndA" vs the number of CG2 iterations.

reason we have chosen (3.11) as the stop criterion for the CG2, rather than the resi
errorrcge. However, it does increase the RCS accuracy in the vicinity-ef0 (see Fig. 2).
This observation, in apparent contradiction with the previous statement, comes from
fact that the backscattered far-field is identically zero for an object #ith 1, illuminated

in axial incidence and invariant by a rotationof4 around the axis [21]. Since (3.5) is
invariantunder the transformatiovi, RCS6 = 0) = —oo forthe solutions of (3.5) obtained
whenr; =r, = 0 if the mesh of the sphere has the proper symmetry, independently
the discretization error. Similar comments can be made regarding the results obtaine
500 MHz on the cone-sphere corresponding to surfageFig. 5—total length 2.2 m, back-
sphere radius 0.4 m, round tip radius 0.1 m, &= 13179 ¢2%° = 3 /20)—in axial, on

tip incidence §"° = ¢'"° = ¢ = 0): see Fig. 3 that plots also the reference RCS compute
with a MoM code for bodies of revolution (BORs) [22] (the exact RCS is polarizatio
independent). The plots atg, and A" vs n for both the cone sphere and the former
sphere at 300 MHz displayed in Fig. 3 show that the plateavofind the number of CG2
iterations are similar for both geometries. The same conclusion holds true for the CG1:
number of CG1 iterations required to solve one of the two systers: b for a given CG2
iteration number comprises between 3 and 4. Calculations performed at various frequer
on the same meshes have confirmed that, for fixed valugsaoidr ,, the minimum ofA7,

as well as the number of CG2 iterations, dependZ_ZS’l‘%e rather than on the shape 6f
while the number of CG1 iterations remains fairly constait.decreases and the number
of CG2 iterations increases when the calculation frequency decreases. An important
as far as we know, unique feature of this IE formulation is that the value of the plate
reached byA"} constitutes an indicator of the accuracy with which the problem has be
solved.
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FIG. 3. Cone-sphere witlz = 1. |E formulation with6™ = 0. Left: RCS vs). Right:rcg, and A" vs the
number of CG2 iterations for the cone-sphere and the sphere of Fig. 2.

IV. IMPLEMENTATION OF THE FE-IE DDM ALGORITHM

Regarding the FE region (& i < N), we proceed exactly as in [14]: Each subdomain
is meshed with tetrahedrons, first-order edge-basis functions are employed and a Gal
procedure is used. The basis functions are compatible with those us8dasrthe IE
(@ = nx hif hdesignates a FE basis function). Then, we solve successively the followi
systems

AHf =bf (4.1a)

that result from the discretization of the variational formulation
/Q‘ {(€x H)-e (¥ xHf) - kéEL.qu}dQJrik/s Hy - Hg dS
+ikL Hy - Hiy dS= by (4.1b)
(A is symmetric) with

i:l:bi‘:—/ﬁtg,T+HinCdS
> (4.2a)
0> 2:bf =b{™* +2ikd - Olz)/ Hiyy- (Hyg —Hig') dS
S

2<i<N: bll = —/ Htg . T+|:|_incds_|_ Eltg X T+Hincds
S S-1

+2ik Hy- H _1dS
S-1
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€>2:bf =b ™+ 2ik(1— ap) /S Hyy - (H{ g — Hig') dS
+2ik - Hyg - [Hf _pyq — High + o (Hig' —HiTy )] S (4.2b)

For the last subdomaim & N), we computdif,gil)tg from the arithmetical mean of{!
andX{~* on account of (3.2) and (3.4)

. i ’ kX
Bt = B+ o (X2 = 2k = (x4 2kX DL (49)

Regarding the IE in (3.1), the r.hg is computed recursively from its definition in (3.2)
by using the TCs o1%. We get

e=1:g} =H™ FiH"™ x n— (Hy,, FiHy x ) (4.4a)
€>2:90 =00+ (1 — ) (H™ FiH™ x n) — (Hy,, FiHY x 0)
1y 1-a _ _
e (Higg FIHR > 0) 4+ = [F(XTH = XY
; -1 -1
—inx (X - X5 (4.4b)
For each polarization TM or TE of the incident wave, and for a given valug ofe
proceed as follows:
e 1 <i < N: ComputeA; and solve (4.1a) using a CG (the initial solutionHé‘l);
stop the CG when
|AH = b|| < ece. (4.5)

e i = N+ 1: ComputeK ;, D, and write the values on out-of-core binary files (for
¢ =1 only). ReaK _, D_ and solve system of (3.1), readk ., D, and solve syster
(the initial solutions for the CG2 arng’~1, X{71); the stop criteria of the CGs are those
defined in Section Il1.2.

The DDM algorithm is stopped for the smallest valuef ¢ satisfying
[H ™ = HE || < 3ece. (4.6)

The IE systems in (3.1) are solvédtimes.

V. NUMERICAL RESULTS

The results that are presented in this section have been obtained on a sphere, a
sphere, a “stopper,” and the air intake defined in [8] (“channel”). The first three objects
inhomogeneous BORs. No symmetry is taken into account, and fully 3-D meshes are u
For the sake of simplicity, andu are scalar and assumed to be constantin each subdome
¢ andy; designate the values efandu in @, 1 <i < N. The relaxation parametey,
as defined in Section Il, is chosen at random at each iteration. All the RCSs that have k
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computed are bistatic with™ = ¢ = 0. A hybrid FE-CFIE code for BORs [3] serves as
a reference for the BORs and a 3-D MoM code [23] for the channel. The calculations
performed on one processor only of a Cray T90. Sections V.1 to V.4 are devoted to
results that have been obtained on each of these four objects.

V.1. Sphere

The radius of the sphere is 25 cm, and the subdomains are spherical shells: TheSiadii c
S, andS; = Sare 30, 34, and 37 cm, respectively. The calculation frequency is 300 MF
Z=1in(25),N=3,and¢; = uj, 1 <i <3,withe; =2,¢, =071 — i), andez =
(1-1)/2,sothatthe conditions of applition of Weston’s theorem [21] are satisfied. Since1
FE formulation (4.1b) is not invariant under thi¢ transformationthis particular choice
of the parameters constitutes a severe test for numerical accufdmy RCS calculated
withry = r, = e = 1078 is compared to the exact one computed with the Mie series c
Fig. 4: the average length of the edges in all of the subdon@?%, is equal tor /20, and
€299 — 5 /20. Also, we verify that the DDM does converge on Fig. 4 that plots

er(f) = |[Hf — H{ ||

vs the number of DDM iterations, L = 163), andrcg, A" for system— of (3.1)—
system4- behaves very similarly—uvs the total number of CG2 iterations. Note that the I
guantities show peaks for each new valuef oAlthough not shown here, a calculation

0 30 60 90 120 150 180

— 20 |
[an]
E o
8 -40 exact |
o s ——— RCS DDM
et/ T RCS’ DDM ]
o T log(rCG2)
T — log(er1) L G—o log(Delta_) 4
© o -2
1 -3
1 -4
1 -5
1 |> K ) L —6
1000 2000 3000 4000

n_GC2

FIG. 4. Sphere with a three layer coating add=1, N =3.¢ =pu;, 1 <i <3,0™ =0, andr, =r, =
€cc = 107°. Top: RCS v¥). Bottom:er; vs the numbet of DDM iterations and cc,, A" vs the total number of
CG2 iterations.
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performed withr; = r, = egc = 1072 yields the same values for the RCS, but with a muct
smaller number of DDM iterationd (= 6).

V.2. Cone-Sphere

Itis identical to the one defined in [14]: The total length of the object is 2 m, the radius
the sphere is 30 cm, and the tangent is continuous at the junction between the sphere ar
cone (see sketch on Fig. &Y. = 3, the interfaces conform &, and the distancel separat-
ing them are, for increasing valuesioi0, 8, and 6 cm, so th&is placed 24 cm away from
S. The calculation frequency is 500 MHz, and the characteristics of the meshes are the
lowing (N& andN"" denote the number of elements and unknowns in subdamaiespec-
tively): N& = 75358, NU" = 98534 £29%°= ) /22; N§' = 60437 Ny = 82337 £59%°= ), /17;
Ng'= 25945 N" = 39450,/5°9°= 1 /13; Ng = 7950,£59%°= ). /12.Zis the axis of the cone
illuminated in axial, on tip, incidenc&{'® = ¢'"® = 0).

The first results have been obtained wth= 0—perfectly electric conducting (PEC)
cone-sphere-e1 =141 — i), u1=1,e2=1—1i, ur=1—-1)/2,e3=2, uz=(1—i)/4,
€cc=10"2,r; =103, andr,=10"2. L = 7 and the ratio of the number of CG iterations—
relative to the solution of the FE systems (4.1a)—to the number of unknowns compri:
between 7.0~* and 510-2. The total number of CG2 iterations for one of the two system
in (3.1) is 92, with an average of 6 CG1 iterations per CG2 iteration. @hceK . are
computed, the total CPU time for one polarization is 4000 s, of which 1800 s for the |
systems (4.1a) (we recall that tiie matrices are recomputed for ea)hAs an indication,
the total memory storage is 80 M words (double precision arithmetic is the standard
CRAY T90, so that 1 word=8 bytes). The IE formulation alone requiré& = 63 M
words. RCS, RCSand the reference RCS are plotted on Fig. 6 which also disgldys
rca, andery(£).

On account of the widely admitted rule of thumb requiring #§48°~ 1 /(10/v|) for a
given subdomain, whene= , /e is the optical index of the medium, a large index implies
alarge value ofsif Sis the interface between the material and the surrounding free-spa
and much larger computer resources are required for the solution of (3.1) Siaraotated

in free-space Witfi_‘;dge: A/10. Consequently, inserting one or several free-space subd

mains allows a reduction of these resources. A computation performed at 500 MHz v
N=3,Z=1,¢= n1 = 2,60 = M2 = €3 = U3 = 1,andch= rh=r,= 10_2(|_ =11,

total number of CG2 iterations equal to 155 with an average of 4 CGL1 iterations per C
iteration) shows that we get an accuracy for the RCS similar to the one achieved in
previous calculation (see Fig. 7). Compared with a computation performed with subdom
Q; alone (N =1), the memory storage is reduced by a factor 2.2, approximately equal
(Ns,/Ns,)? = (1317979502, on account of the fact that the memory required to solve th

2m

FIG.5. Cone-sphere: Geometry and domain partitioning.
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FIG. 6. Cone-sphere with a three layer coating ahet 0, N = 3,6™ = 0. Top: RCS v#. Bottom:er, vs the
number¢ of DDM iterations and g, A" vs the total number of CG2 iterations.

20

10l reference (BOR) 2
& ——4 DDM+ABC2 TM, TE L=9
oo RCS DDM+IE TM,TE L=11

RCS (dB)

_50 " 1 " 1 x 1 " 1 " 1 "
0 30 60 90 120 150 180
0

FIG.7. Cone-sphere with a monolayer coating ahe 1, N = 3,6 =0. Free-space if2, U Q3. IE or ABC2
onS.
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— -
./
FIG. 8. Stopper: Geometry and domain partitioning.

largest of the FE systems in (4.1b) is small compared to the one required to solve the
systems in (3.1). Another way to reduce the computational complexity is to implement
S = Sthe second-order conformal ABC [24] (termed ABC?2) as in [14] with= 3. We
observe on Fig. 7 that the accuracy of the RCS thus computedd) is similar to the one
achieved with the IE and the memory storage is divided by 8 and the CPU time by 3 (
distance betweef, andS; is equal tax/2.5).

V.3. Stopper

Stopper is sketched on Fig. 8: total length 1 m, radius of the hemisphere 30 cm. F
subdomains are usefl, S, S are partially concave and present sharp edges. Because
will also implement the ABC2 o1 = &, S has a bevelled edge. One of the reasons the
has motivated the calculations presented in this section was to verify that partially conc
interfaces with singularities had no impact on the behavior of the algorithm, as it has
ready been done in [13] for the 2-D case. The distadcesparating the interfaces are, for
increasing values df 5, 4, 3, and 2 cm. The characteristics of the meshes are the follo
ing: N&' = 59753, NU" = 82277,579°= ) /25; N&! = 22367 Ny = 35383 (2% = 3 /17;

Ng' = 14465, N4" = 23995, /279°= ) /17; N&' = 16638, Ny = 26089, £57% = /13;
Ns = 6171,[’“;"96: 1/13. The computational frequency is 500 MHz= 1, egc = 1 =
r, =102 ande = i, 1<i <N =4.

The first results have been obtained with=1 —i,e; = 2,63 =0.71(1 — i), andes =
(1 —1i)/2. Figure 9a plots the RCS computed in normal incidence on the cylindrical p:
(6™ = 90°): L = 8, and the total number of CG2 iterations for one |E system is 154. Desp
the large dynamic range of the RCS, the DDM achieves a reasonable accuracy. Note
the exact RCS is polarization independent. This is verified by the FE-CFIE formulati
for BORs used as a reference since it is invariant undei¢higansformation, contrary
to the DDM formulation. Another calculation is performed under the same incidence wi
€1=0711—1i), e2=€3=¢4 =1 (see Fig. 9b)L = 12 and the total number of CG2
iterations for one |IE system is equal to 263. Also, are plotted on Fig. 9b the RCSs compt
with N = 4 and the ABC2 or&. We observe that the IE provides a noticeable increase ¢
the accuracy. Note that the distana¢@.7) betweerSandS, is small for the ABC.

V.4. Air Intake (“Channel”)

The geometry is an evolutive channel enclosed in a circular cylinder ofza¥xéngth
1.365 m, and radius 0.147 m. The entry of the channel has an elliptic cross-section,
the closed end has a circular cross-section (see Fig. 10). We refer to [8] for additio
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20 ‘ 15

— reference (BOR)
reference (BOR) OO0 DDM+IE L=12
I ——— DDM+IE L=8 ——- DDM+ABC2 L=9

RCS (dB)

-35

_50 ! 1 1 ' 1 1 1 1
0 80 160 240 320 80 160 240 320

0 0

FIG.9. Stopperwithz =1,N =4,¢ = u;, 1 <i <4, and9™ = 9C°. Left: Four layers coating and IE on
S. Right: Monolayer coating and free-spaceinU Q3 U Q4. IE or ABC2 onS.

information on the geometry (note that the definition ofthg, z axes differs from the one
in [8]). The object is perfectly conducting (= 0). The wave is obliquely incident on the
entry of the channel with™™ = 30, and the computational frequency is 1.1 GHz.

To minimize Ns, we have enclosed the channel in a cylinder of @xose surfac&;
is placed as close as possible to the exterior surface of the object: The distance tigtwe
andS; is 5 mm (see Fig. 10N =1 (S, = S) and the length of the edges in the volume
mesh ofQ;, constituted of free-space, varies fragil5 onSto 1/11 onS: NE! = 54899,
N;" = 80592,Ns = 8682, and the memory storage is 84 M words. The RCS is comput
from the DDM+ IE with egc =, =rp = 1072 and a MoM code [23] using the EFIE

o ———

0.125m 1.365m -

FIG. 10. Channel: Geometry and domain partitioning.
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0 100 200 300 100 200 300
0 6

FIG. 11. Channelg™™ = 3¢, Z = 0, and free-space if2;. DDM +IE: N=1 and IE onS= S,. DDM +
ABC2: N=2 and free space ift,; ABC2onS=S.

on & with the same surface mesh (24.087 edges) than in the volume mesh. Both
plotted on Fig. 11. In TM polarization, we observe that the MoM and DPME results
are superimposed while, in TE, they differ in the vicinity of thaxis @ = 0°). We may
explain this as follows. The first cavity mode is not excited in TM'{i parallel to the
major axis of the elliptical aperture). As a consequence, the field does not enter the cha
and the air intake behaves essentially like a closed PEC cylinder. Conversely, this moc
excited in TE E" is parallel to the minor axis of the ellipse), the field enters the chann
and reradiates through the aperture. In this case, it is well known (see, e.g., [25]) that a |
numerical accuracy is necessary to properly model the field propagation inside the duct,
low-order elements are used in the present FEM. A noticeable characteristic of the DI
calculation is the high value df (L = 18). This may be due to the very small distance
separatindgs andy: Like the ABC from which it is derived, the TC is all the more efficient
as the surface on which it is implemented is situated far away f%¢fh3]. Also, the CG
used to solve the FE system (4.1a) converges more slowly than in the previous case:
account of the losseless cavity adid= 0: The ratio of the number of CG iterations to the
number of unknowns comprises betweeh(?® and 510~2. However, it is important to
note that the solutions to the IE systems remain unaffected by the cavity: The total num
of CG2 iterations for one of the two systems in (3.1) is 220, with an average of 4 C(
iterations per CG2 iteration.

Then, we have added another subdonsairfsee Fig. 10) on the bounda$y of which is
implemented the ABCZ; is conform toS,—except for the edges that have been rounded-—
and its distance fron% is equal to 0125 m= 1/2.2; N§' = 140317 ,Ny" = 183322, and
€29 = ) /13. The RCSs computed with = 2 (S = S) andegc = 102 (L’ = 16) are
also plotted on Fig. 11, and the accuracy achieved is reasonably good. Compared
the DDM+- IE calculation, the memory storage and CPU time are divided by 4 and 1
respectively.
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VI. CONCLUSIONS

We may consider that the numerical results presented in this paper validate the hy
FE—IE DDM proposed in [15] for the scattering by inhomogeneous 3-D objects. The m:
advantages offered by this technique are the following.

(1) Allthe linear systems that are solved in the DDM algorithm possess unique solutio

(2) These solutions converge to those of the original probldm() < 0, Im(u) < 0.

(3) Each of the FE and IE systems are solved separately, thus reducing the comple
of the original problem:

—Regarding the FE region, the interface between the subdomains may be loc:
anywhere, may include concave parts, and may present surface singularities. The mel
storage iSO(NE. ), and the convergence of the CG used to solve the FE systems is
celerated thanks to the lossy boundary conditions (TCs). As an example, a large prokt
involving more than B - 10° elements and.6 - 10° unknowns has been easily solved on
one processor of a CRAY T90 with a storage of 53 M words [14].

—Regarding the particular IE formulation employed in this paper, all the matric
that are inverted are Hermitian positive definite, thus allowing the use of a very sim|
double CG. Both systems in this formulation are solved separately, leading to the stor
of Ns(Ns+ 1) real numbers. The numerical results have displayed a threshold for 1
discrepancy between the I.h.s. and r.h.s. in identity (3.9), due to the discretization error
beyond which itis, most of the time, unecessary to carry on with the iterations. The value
this threshold constitutes an indicator of the accuracy with which the IE systems are soly
These characteristics remain unchanged when the IE formulation is coupled to the F
through the DDM. The numerical experiments have shown that the total number of C
iterations is of the order of x ngc2(¢ = 1)/2, on account of the fact that the solutions
computed at iteratiot? — 1) are used as initial solutions for iteratién

—As a result, for an electrically large object, the memory storage required by tt
hybrid method corresponds, essentially, to the storaghf%feal numbers and can be
further reduced if the fast multipole algorithm is implemented [26, 27]. Also, the numeric
experiments have validated the fully iterative procedure that has been employed in this p
for the solution of this DDM algorithm. Obviously, iterative solvers more sophisticated th:
the very simple CGs implemented here should be experimented with, but this is beyonc
scope of this paper.

The main drawback of this technique resides in the fact that the IE systems mus
solvedL times.L increases wheN increasesk. > N, otherwise the solution if2; remains
unaffected by the spurious reflections due to the TCSeri14]. Also, L increases when
the innermost interfac®, is close to the surface of the object, as it has been described
Section V.4, or when weakly attenuated surface waves are present on one of the interf
S, on account of the low efficiency of the TC for waves in grazing incidence [13]. For tt
latter case, a trivial remedy consists in movigg For instance, if strong creeping waves
are propagating on the outermost surface of the materials coating the object, a free-s
region can be inserted into the last subdomain between this surface and the Syrfac
terminating the computational domain. As a general rule, it has been found ihah the
order of 10 wherN < 4 (see also [14]).

Lastly, let us mention that the second-order conformal ABC proposed in [24] constitu
a cheap and memory-efficient, although less accurate, alternative to the IE, that has pr
to be interesting for some applications.
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APPENDIX A

First, we define the operatoks. and D.. Then, we show that identity (3.9) is exactly
satisfied when the discretization error goes to zero.
K. andD.. are defined by

K, () = ¥ x / o()g (. 0) dr T %z < ¥ x /Q(ﬂ)g,(L, rydr — %n(g X ®(D)
S S
(Ala)

D. () = 2k2{:FY y /ch(r_’)gi . rydr + %v < ¥ x /Q(r_’)gi ©r) dﬂ}. (Alb)
S S

In the following, ¢ denotes the discretization error, and quantities with the subscript
designate discretized quantities. Let us define\by the discrepancy to identity (3.4)

i A
X, =F=Xet + — (A2)

2k 2k
The second equation of the discretized system (3.1) reads
_k(KEHi + Iﬂl )Xei + 2k2ﬂX;i + Déixéi =0.

Substituting toX_ . the definition (A2) yields

i 1
—KA X + BA — ﬁDe+xe+ + ?DeJrAevL =0

i 1
L DX 4+-——D.A._ =0

_kH
KXo+ B + 55 o

Adding or substracting the two above equations, we get

_(K:—'&-XH' + KeH—Xf_) T 2k2

(D6+XE+ - De—Xe—) + ﬂ(A€+ + Ae—)

1
+ ﬁ(Dﬂ-Ae-&- + De—Ae—) =0 (A3a)
- H H 1 .
| (KE+X6+ - Ke_xe—) - W(DH—XE-&- + De—xe—) - |,3(Ae+ - Ae—)
[
- %(D5+Ae+ - De—Ae—) =0. (A3b)

On the other hand, iff®, H®) designates the exact scattered field solution of the proble
considered in Section I11.2, let us define the fieid (H°) for e R\ Shy

ES() = —V x /(ES x 0)()g(L, ) dr’ + iEz x ¥ x /(HS x 0)(£)g(L, ') dr’
S S

H%(D) = —¥ x /(HS x n)()g(r, ) dr’ — IEY x ¥ x /(ES x )(r)g(x, ') dr’
S S
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with
g ) =g (L ) —igi(L ).

We know thaE>(r) = ES(r), H®(r) = HS(r) for Lin the exterior ofS, andE () = H(r) =
0 for rin the interior ofS. As a consequence,iif = lim,_, 0+ (L— an),r € S, we have

=S

E(7) = —¥ x /(ES x 0)(£)g(L, ') dr’
S

+ IEY x ¥ x /(Hs x n)()g(r, v’y drl + %(n_x nx ) (Ada)
S

%) = —¥ x / (H° x D()g(r. ) dr
S
— IRY x ¥ X /(ES x 0)(r)g(L, £ydr + %(le nx H% (@  (A4b)
S

and
E’c)=H’c)=0. (A4c)

For the discretized fields}, HY) solution of the discretized system (3.5), we have, from the
definition in (3.6a)

Xew = (E £iHS) x
Then, it is easy to show from (Ala, b), (Ada, b) that

— (KA Xeqr + KA X)) = =5 (Dey Xei — De— X)) = 2B (1)

2k2
(KA Xy — K Xeo) — 2k2(D€+XE++ D, X.)=2H:()
and (A3a, b) can be written as
E.() + E(Ae+(n) + A (D) + 4k2[(De+Ae+)<L> +(De—A)(D] =0

ip

H () - 5 (Bt (D = A (D) - [(DetAc) (D) — (De—Ac-) (D] = 0.

4k2

Combining the two above equations, we get

BAc (D) + 5 (Dey Ac)(D) = —(E(0) +iH (7))

2k2

BAc (D) + 55 (DA )(D) = —(E.(7) — i H ().

2k2

Finally, performing the Hermitian inner product of the first (respectively second) equati
by A, (respectivelyA._) and using the first identity in (3.3b), we arrive at

1 ~ Lo~
Bl A2+ @||66+A6+||§o = —(Aey, EL(C) +iH ()
(A5)

BIAIP + s5 18— A2 = —(Ac, EL() —iH ().

2k2
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On account of (Adc), lim.o ES (t~) = HS(r") = 0 and, since O< 8 < 1, (A5) shows that

th

cal

10.

11.

12.

13.

14.

15.

16.

17.

18.

e values ofA. ., A._ go to zero when the discretization error goes to zero.
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